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An asymptotic solution is obtained to the problem of internal wave propagation 
in a horizontally stratified inhomogeneous fluid of non-uniform depth. It also 
applies to fluids which are not stratified, but in which the constant density 
surfaces have small slopes. The solution is valid when the wavelength is small 
compared to all horizontal scale lengths, such as the radius of curvature of a 
wavefront, the scale length of the bottom surface variations and the scale length 
of the horizontal density variations. The theory underlying the solution involves 
rays, a phase function satisfying the eiconal equation, and amplitude functions 
satisfying transport equations. All these equations are solved in terms of the 
rays and of the solution of the internal wave problem for a horizontally stratified 
fluid of constant depth. The theory is thus very similar to geometrical optics 
and its extensions. It can be used to treat problems of propagation, reflexion 
from vertical cliffs or from shorelines, refraction, determination of the frequencies 
and wave patterns of trapped waves, etc. For fluid of constant density, it reduces 
to the theory of Keller (1958). The theory is applied to waves in a fluid with an 
exponential density distribution on a uniformly sloping beach. The predicted 
wavelength is shown to agree well with the experimental result of Wunsch (1969). 
It is also applied to determine edge waves near a shoreline and trapped waves 
in a channel. 

1. Introduction 
The theory of internal gravity waves has been developed primarily for a 

horizontally stratified fluid of uniform depth, bounded above by a horizontal 
free surface and below by a rigid horizontal bottom. Fluids of non-uniform depth 
have been considered by Magaard( 1962), Cox (1959), Cox & Sandstrom (1962) and 
Wunsch (1968, 1969). Wunsch considered waves in a fluid with an exponential 
density variation on a uniformly sloping bottom. We shall work out the theory 
for fluids for any stratification and any non-uniform depth. The resulting theory 
also applies to fluids with negligible velocity, in which the constant density 
surfaces have small slopes. It is even useful for horizontally stratified fluids of 
uniform depth, although then a simpler theory applies. 

The theory we shall develop is an adaptation of that developed by Keller 
(1958) to treat surface wave propagation in a fluid of constant density and non- 
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uniform depth. Therefore it applies when the fluid depth and the wave amplitude 
vary very little over a horizontal distance of one wavelength. Mathematically 
it is an asymptotic theory, valid when the wavelength is short compared to some 
horizontal scale length typical of the bottom surface, and also short compared to 
the radius of curvature of a wave front. 

The theory involves rays, the eiconal equation for a phase function and trans- 
port equations for amplitude functions. Thus it is very similar to geometrical 
optics and its extensions, which yield an asymptotic theory of the wave equation. 
Consequently, it can be used for all the purposes for which that theory has been 
used. This includes the determination of the waves radiated from a source, the 
reflexion of waves from a vertical cliff or from a shoreline, the refraction of pro- 
pagating waves, the diffraction of waves by islands, etc. 

Shen, Meyer & Keller (1968) have recently determined the eigenfrequencies 
of trapped waves, such as edge waves, in fluid of constant density but non- 
uniform depth. They used the theory of Keller (1958) together with the method of 
Keller & Rubinow (1960) for finding eigenvalues of the reduced wave equation. 
We shall give a similar analysis using the present theory, and show that many of 
the results of Shen et al. (1968) can be carried over with slight modifications. 
We shall also apply our theory to the case treated by Wunsch (1968), and show 
that the predicted wavelength agrees with his experimental result (Wunsch 
1969). 

Like geometrical optics and other asymptotic theories of wave propagation 
the present theory fails at  caustics, and it also fails a t  shorelines. It could be made 
valid a t  such places by the introduction of boundary layers, or by the uniform 
method of Kravtsov (1964) and Ludwig (1966). Boundary layers are also needed 
wherever some derivative of the depth is discontinuous. Without them, we can 
obtain only a finite number of terms in the expansion of the wave motion. 

2. Formulation 
Let po( Y) be the density of a stably stratified incompressible inviscid fluid 

at rest,t bounded below by the rigid surface Y = - H ( X ,  2) and above by the 
free surface Y = 0. Let v = (u, w, w) eiot denote the velocity of a small amplitude 
time harmonic motion of the fluid, p eiot the corresponding change in density, 
p e-wt the accompanying change in pressure, and Y = q ( X ,  2) eiot the result- 
ing equation of the free surface. The linearized equations of motion, incompressi- 
bility and continuity satisfied by these quantities are: 

iopov = Vp+(O,gp,O). (2.1) 

v - v  = 0, (2.2) 

-iop+v.vpo = 0. (2.3) 

To apply the theory to be developed here to a slowly moving unstratified fluid, we 
assume that the slow motion is negligible. We also ignore the X ,  2 and t derivatives of 
the density p o ( Y ;  X ,  2,t). The dependence of p , ( Y )  on X ,  2 and t will not be shown 
explicitly. 
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The linearized kinematic and dynamic conditions on the free surface, and the 
condition of rigidity of the bottom are 

-iW7(X,Z) = v(X,O,Z), (2.4) 

(2.5) 

(2.6) 

From (2.1), (2.3) and (2.5) we obtain v, p and 7 in terms of p ,  in the form 

(2.7) 

(2.8) 

P ( X ,  0,Z) = SPO(0) 7 ( X ,  21, 
v[X, - H(X, Z), Z] V [  Y + H(X, Z)] = 0. 

We seek solutions v, p ,  p and 7 of (2.1)-(2.6). 

u=- ,  v=-i~p,(gpoP+w2po)-1,  w=+, P 
imp0 %@Po 

P = POPPY (w”0 + SPOP )-l, 

(2.9) 

Now we use (2.7) and (2.9) to eliminate v and 7 from (2.2), (2.4) and (2.6), to 
obtain 

~ 2 P o h 4 7 P o ,  + w2Po)-% + AP = 0, (2.10) 

(2.11) 

p o ~ P + [ ( g / ~ 2 ) p o p + p 0 ] V H ~ V p  = 0 a t  Y = -H(X,Z). (2.12) 

In  (2.10)-(2.12) and below, V = (a,,a,) and A = &+a%. Once we find p satis- 
fying (2.10)-(2.12), v, p and 7 can be found from (2.7) to (2.9). 

It is convenient to introduce the dimensionless quantities x, y, z, h, a and p 
defined by 

x = X / L ,  y = w2Y/g, x = Z/L, h = d H / g ,  a = 1 +--, SPOP /3 = w2L/g. 
W2P0 

(2.13) 

Here L denotes a typical horizontal scale length, and a is one minus the ratio of 
the square of the Viiisala frequency to w2. If we consider p ,  po, h and a to be 
functions of the new variables, then (2.10)-(2.12) become 

(2.14) 

p l - a p  = 0 on y = 0, (2.15) 

p2p’ -k aVh * V p  = 0 on y = - h(x, z). (2.16) 

Here and below the prime denotes differentiation with respect to y. 

3. Asymptotic solution for p large 

form 
For /3 large we seek an asymptotic solution of (2.14)-(2.16), which is of the 

p(x,P) = A(x,P)  $ ( y ; ~ , x ) e ~ ~ ~ ~ . ~ ) .  (3.1) 
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The amplitude A and phase s are to be determined, while q5 is defined to be a 
solution of the problem 

(3.2) 

$'-a$ = 0 on y = 0 ,  (3.3) 

q5' = 0 on y = -h(x,z). (3.4) 

This is an eigenvalue problem for the ordinary differential equation (3.2) with 
eigenvalue n2(x,z), corresponding to wave propagation in a stratified fluid of 
uniform depth h(x,x). Thus both n and q5 depend on x and z, since h does and 
po may. They can be found analytically ifpo(y) is simple enough, and numerically 
otherwise. Each eigenfunction with n2 > 0 represents a mode of propagation 
with the real propagation constant Pn(x,z). One of these modes is the surface 
wave and the others, if any, are internal waves. The eigenfunctions with n2 < 0 
represent evanescent or non-propagating modes. We shall assume that n2 and q5 
are known, and try to determine A and s in terms of them. 

Upon inserting (3.1) into (2.14)-(2.16) we obtain: 

(iP)2[a(Vs)2Aq5+ ( E f  -(Aq5)'-(A$)"] 0) ' +ip~[2Vs.V(Aq5)+Aq5As] +aA(Aq5) = 0, 

(3.5) 
(Aq5)'-aAq5 = 0 on y = 0, (3.6) 

P2(Aq5)'+iPaAq5Vs.Vh+aVh.V(Aq5) = 0 on y = -h. (3.7) 

UP0 

By making use of (3.2)-(3.4) we can rewrite (3.5)-(3.7) as follows: 

1 ( ip)2 [aAq5{(V~)~ - n2} +- ( ~ / 3 0 ) f A ' $ - 2 A ' Q ' - A " ~  

U f  0 

+i/3~[2Vs*V(A$) +A$As] +aA(Aq5) = 0, (3.8) 

A ' = O  on y = O ,  (3.9) 

(i/3j2A'q5-i/?aAq5Vs.Vh-aVh.V(Aq5) = 0 on y = -h(z,z). (3.10) 

To solve (3.8)-(3.10) for A and s, we assume that A has the asymptotic ex- 

A(x,P) N Ao(x,z)  + C ( i P ) - m A m ( X ) *  (3.11) 

We now insert (3.11) into (3.8)-(3.10) and then equate to zero the coefficient 
of each power of P in each equation. This yields the following system of equations 

(3.12) 
for s and the A,: ( V S ) ~  = n2(x,z), 

q5Ak - [ q5 0' - 2q5' A& = a[2Vs - V(q5Am-J + $A,-,As] + ~ t A ( q 5 A ~ - ~ ) ,  

pansion m 

m= 1 

(3.13) 
A k = O  on y = O ,  (3.14) 

= aq5Am-,Vs.Vh+aVh.V(q5A,-,) on y = -h(x,z). (3.15) 

CCPo I 

Equations (3.13)-(3.15) hold for m 2 1 and in them A,  = 0 if m < 0. 
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Equation (3.12) is the well-known eiconal equation of geometrical optics, 
in which nZ(z,z) plays the role of the refractive index. Therefore it can be solved 
by means of rays. These are curves normal t o  the wave fronts s = constant, and 
they are the characteristics of (3.12). Let the parametric equation of a ray be 
x(v), z(a), in which the parameter v denotes arc-length along the ray increasing 
in the direction of propagation. Then the rays are the solutions of the ray 

(3.16) 
equations 

z, = nn,, 

Along a ray s is given by 

z, = nnz, x: + z: = 1. 

(3.17) 

Once s has been found, (3.13)-(3.15) constitute a recursive system of equations 
for the successive determination of the A,, starting with m = 1. For m = 0, 
(3.13)-(3.15) are satisfied trivially, because A; = A; = 0, since A ,  is independent 
of y by assumption, and A_, = A_, = 0 by definition. To solve these equations 
for m 2 1, we multiply (3.13) by $lapo, and integrate the result from y = 0 to 

In  (3.18) and below, we indicate only the argument y of A,(x, y,z), and suppress 
z and z. To obtain (3.18) we have put &(O) = 0, in view of (3.14). We now 
multiply (3.18) by apo/cj2 and integrate the result with respect to  y from -h  
to y, obtaining: 

A m ( y )  = A,( - 4 - /rhF/v:i [ZVs. V($Am_,) +$A,-,As+A($A,_,)]dy” dy‘. 

(3.19) 

To obtain A,( -h),  which occurs in (3.19) ,we set y = -h in (3.18), use (3.15) 
and replace m by m + 1 ) t o  find 

= -/’ 2 [zVs.V($A,)+$A,As+A($A,_,)]dy. (3.20) 
-h Po 

This is not a useful expression for A,( - h), because A,(y) also occurs in the inte- 
grand. Therefore we substitute (3.19) for A,@) in the integrand, and obtain 

92(-h)A,(-h)Vs.Vh+ (2Vs*V[$A,( -h)]+@A,,(  -h)As)dy = Bm-l. 

(3.21) 
m 

Here B,-,(z, z )  is defined by 

24 

-so 9 [2Vs. V($dm-,) + $ITr6-&+ A($Am-,)] dy .  (3.22) 
-h Po 

Fluid Mech. 38 
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In  (3.22) I,-l(x) = A,(y) - A,( - h) is given by the integral on the right side of 
(3.19), in terms of A,-l and A,-+. Thus, Bm-l (x ,~)  is expressed in terms of 
A,.-, and Am--2, so it can be considered to be known. Then (3.21) can be viewed 
as an equation for A,( - h). 

We can rewrite (3.21) in the form 

~ $ V S  * VA,( - h) +A,( - h) VS . V$ + $A,( - h)  AS = B,-1. (3.23) 

Here $ is defined by (3.24) 

Now (3.23) can be written as an ordinary differential equation along a ray, 
since the directional derivative V s * V  is equal to ndldcr. This is so because 
the magnitude of Vs is n, as we see from (3.12), and the ray direction is normal 
to the curves s = constant, as it is parallel to Vs. Therefore we can write (3.23) as 

(3.25) 
d 

2n [A,( - h) $41 + [A,( - h) $+]As = $-4B,-l. 

The solution A,( -h,a) of (3.25), at the point x(cr), z(cr) on a ray, is 

The exponential factor in (3.26) can be evaluated in terms of geometrical 
quantities with the result (Luneburg 1944): 

(3.27) 

Here da(a) denotes the width of a narrow strip of rays at  the point %(a), y(cr) 
on a ray, and da(ao) denotes the width of the same strip at  z(ao), z(a,) on the 
same ray. The ratio da(a)/da(a,) is also the Jacobian of the mapping by means of 
rays of the wavefront through ~(cr,), z(cro) on the wavefront through x(cr), 
z(a) .  Upon using (3.27) in (3.26) we can write A,( - h, a) in the form 

Then Aml(y,cr) is given by (3.19), in which A,(-h,cr) is given by (3.28). By 
using the result (3.19) for A,(y,cr) in (3.11), we obtain A(x,p). Then p ( x , P )  
is given by (3.1), in which A is given by (3.11), s(z,y) by (3.17); and $(y;x,z) 
is a solution of (3.2)-(3.4). 

The leading term in A(x,P) is Ao(x,z),  which is independent of y. Therefore 
A ,  is given by (3.28) with m = 0. Since A ,  = 0 if m < 0, it follows from the 
definition (3.22) that B-, = 0. Then (3.28) yields 

(3.29) 
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To see the physical meaning of (3.29) we rewrite it in the form 

A 3 4  1CI(O-)n(4 d a ( d  = A&.,) W o ) n ( ~ o )  W O - 0 ) .  (3.30) 

This is a conservation equation, which states that the energy flux, proportional 
to A2$nda, is constant along an infinitesimal strip of rays. 

The leading term in the expansion of p is obtained by using (3.29) for A, 
and (3.17) for s in  (3.1). The result is 

The amplitude A 0 [ x ( ~ 0 ) , z ( ~ 0 ) ] 7  and phase S [ ~ ( ~ ~ ) , Z ( C T ~ ) ]  at the point Z(~,),Z(O-,) 

on a ray, are arbitrary. From (3.31) and (2.7)-(2.9), we can obtain the leading 
terms in v, p and 7. The leading terms in u and w are obtained by differentiating 
the exponent in (3.31), so that (2.7) yields 

(3.32) 

This shows that the horizontal velocity is in the ray direction Vs at any depth y. 
For v and p, (2.7), (2.8) and (3.31) yield 

The height 7 of the free surface is, from (2.9), 

P@, 0,4 
SPO(0) 

7 = -. 

(3.33) 

(3.34) 

(3.35) 

In  (3.32)-(3.35), p is given by (3.31). 

those obtained by Keller (1958) for the uniform density case. 
In  the special case po(y) = constant, all the results obtained above reduce to 

4. An example 
Let us apply our theory to a fluid with the exponential density distribution 

PO(Y) = PooexP(-N2Y/g). (4.1) 

(4.2) 

Here N is the constant Vaisala frequency. Then (2.13) yields for a the constant 
value a = 1 - N2/w2. 

Now (3.2) becomes, upon recalling from (2.13) that Y = yg/s/w2, 

(4.3) 
24-2 
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A solution of (4.3) satisfying (3.4) (i.e. $‘ = 0 at y = - h) is 
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At the top surface y = 0, we shall suppose that there is a rigid lid, so that (3.3) 

$’= 0 on y = O .  (3.3‘) 
is replaced by 

When (4.4) is used in (3.37, it yields the dispersion equation, 

( h = mn (m = 1,2, ...). 
N4)4 

Solving (4.6) for n, and using (4.2) for a, yields 

When (4.7) is used in ( 4 4 ,  it yields 
N2 mnri A ---+-. 2 ’ -  2w2- h 

The wave-number in the original variables is PnjL, and from (4.7) this is 

$== (s-l)”[(,) mn 2 +-@I N4 4 . 

(4.6) 

(4.9) 

It is of interest to compare (4.9) with the measured values of the horizontal 
wavelength A = ZnLjPn for waves in an exponentially stratified liquid over a 
uniformly sloping bottom with a rigid lid (Wunsch 1969). From (4.9) we have 

A = -  Z H  (” --1 )$  [ 1 + (E)2]-! 
m w2 

(4.10) 

Except for the last factor, which is practically unity in the experimental case, 
this result is the same as that of Wuiisch. In  the experiment, H = 0.112x, 
with x denoting distance from the shoreline, ( N2/w2 - 1)-4 = 1.68, the Vaisala 
period was approximately 3 sec, so that N = $m sec-1 and g = 980 cm see-2. 
Thus, with m = 1, (4.10) yields 

h = 0*133x[1+O(10-8x2)]-~ z 0 .133~  (x < lo4). (4.11) 

This result (4.11) agrees fairly well with the experimental results, as is shown in 
figure 1. 

From (3.24), (4.4) and (4.8) we have 
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Now we can evaluate the leading term of p, given by (3.31), by using (4.12) 
for $, (4.7) for n and (4.4) for +. If we denote quantities evaluated at go by 
affixing a subscript zero, the result can be written as 

(4.13) 

30 40 50 60 70 80 

2 (cm) 

FIGURE 1. The wavelength at  the distance x from the shoreline for waves in a fluid 
with an exponential density distribution over a uniformly sloping bottom. The straight 
line, based upon the present theory, is given by (4.11). The points are the measured 
values of Wunsch (1969). In the experiment ( N 2 / w 2 -  1)-* = 1.68 and H / x  = 0.112. 

If N2h/u2 -g 1, (4.13) can be simplified to 

(4.14) 

For two-dimensional cases da,/da = 1. In  two dimensions with a uniformly 
sloping bottom we can set u = x and h = yx. We can also set p ,  = 

exp(ips,) 2( - l)mA,h,/mni. Then (4.14) becomes 

(4.15) 

This represents a wave travelling in the direction of increasing x, and its complex 
conjugate 23 represents a wave travelling in the opposite direction. 



374 J .  B. Kelkr and V .  C. Mow 

5. Trapped waves 
As another application of this theory, we shall determine the frequencies of 

trapped waves in a stratified fluid of non-uniform depth. Let us consider first 
the case in which the fluid lies in the channel x > 0,  0 < x < b,  with a shoreline 
at x = 0. We assume that the depth is independent of x ,  so h = h(x). Therefore 
the eigenvalue n = n ( x )  is also independent of x ;  then trapped modes can occur. 
Each such mode is oscillatory between the shoreline x = 0 and a caustic at x = a, 
and decays exponentially for x > a. 

The eigenfrequencies of the modes can be found by adapting equations (31) 
and (32) of Shen et al. (1968). To do so, we replace M by pi,  k ( x )  by n(x ) ,  and set 
c = n(a). Then those equations become the following equations for p and a:  

2p*n(a)b = 2mn, (n, = 1,2, ...I. (5.2) 

The solutions of these equations yield the caustic distance aL and the eigen- 
frequency w = (gp/L)+ for each mode, where L is the unit of length introduced in 
(2.13). The modes are labelled by the two integers n, and n,. When the channel 
walls at x = 0 and z = b are absent, then (5.1) alone determines the relation 
between p and a for edge waves along a shoreline. The frequency spectra deter- 
mined by (5.1) and (5.2) are discussed in detail for fluid of uniform density by 
Shen et al. (1968); much of that discussion is applicable to the present case. In  
the same way that we adapted (31) and (32) to obtain (5.1) and (5.2) ,we can adapt 
many of the other results of Shen et al. to obtain trapped waves in circular basins, 
around circular islands, above submerged peaks, etc. 

This research was supported by the Office of Naval Research, Contract No. 
NOOOl4-67-A-0467-006. 
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